.RU

Водяной пар в атмосфере влажность воздуха. Характеристики содержания водяного пара в атмосфере


ВОДЯНОЙ ПАР В АТМОСФЕРЕ

ВЛАЖНОСТЬ ВОЗДУХА. ХАРАКТЕРИСТИКИ СОДЕРЖАНИЯ ВОДЯНОГО ПАРА В АТМОСФЕРЕ

Влажностью воздуха называют содержание водяного пара в атмосфере. Водяной пар является одной из важнейших состав­ных частей земной атмосферы.

Водяной пар непрерывно поступает в атмосферу вследствие испарения воды с поверхности водоемов, почвы, снега, льда и растительного покрова, на что затрачивается в среднем 23 % солнечной радиации, приходящей на земную поверхность.

В атмосфере содержится в среднем 1,29 • 1013 т влаги (водяно­го пара и жидкой воды), что эквивалентно слою воды 25,5 мм.

Влажность воздуха характеризуется следующими величинами: абсолютной влажностью, парциальным давлением водяного пара, давлением насыщенного пара, относительной влажнос­тью, дефицитом насыщения водяного пара, температурой точки росы и удельной влажностью.

Абсолютная влажность а (г/м3) — количество водяного пара, выраженное в граммах, содержащееся в 1 м3 воздуха.

Парциальное давление (упругость) водяного пара е — фактичес­кое давление водяного пара, находящегося в воздухе, измеряют в миллиметрах ртутного столба (мм рт. ст.), миллибарах (мб) и гектопаскалях (гПа). Упругость водяного пара часто называют абсолютной влажностью. Однако смешивать эти разные понятия нельзя, так как они отражают разные физические величины ат­мосферного воздуха.

Давление насыщенного водяного пара, или упругость насыщения, Е— максимально возможное значение парциального давления при данной температуре; измеряют в тех же единицах, что и е. Упру­гость насыщения возрастает с увеличением температуры. Это зна­чит, что при более высокой температуре воздух способен содер­жать больше водяного пара, чем при более низкой температуре.

Относительная влажность f — это отношение парциального давления водяного пара, содержащегося в воздухе, к давлению насыщенного водяного пара при данной температуре. Выража­ют ее обычно в процентах с точностью до целых:

f=(e/E)- 100%.

Относительная влажность выражает степень насыщения воз­духа водяными парами.

Дефицит насыщения водяного пара (недостаток насыщения) d — разность между упругостью насыщения и фактической упругос­тью водяного пара:

= E—e.

Дефицит насыщения выражают в тех же единицах и с той же точностью, что и величины е и Е. При увеличении относитель­ной влажности дефицит насыщения уменьшается и при/= 100 % становится равным нулю.

Так как Е зависит от температуры воздуха, а е — от содержа­ния в нем водяного пара, то дефицит насыщения является комп­лексной величиной, отражающей тепло- и влагосодержание воз­духа. Это позволяет шире, чем другие характеристики влажнос­ти, использовать дефицит насыщения для оценки условий про­израстания сельскохозяйственных растений.

Точка росы td (°С) — температура, при которой водяной пар, со­держащийся в воздухе при данном давлении, достигает состояния насыщения относительно химически чистой плоской поверхности воды. При/= 100 % фактическая температура воздуха совпадает с точкой росы. При температуре ниже точки росы начинается кон­денсация водяных паров с образованием туманов, облаков, а на поверхности земли и предметов образуются роса, иней, изморозь.

Удельная влажность q (г/кг) — количество водяного пара в граммах, содержащееся в 1 кг влажного воздуха:

q = 622 е/Р,

где е — упругость водяного пара, гПа; Р— атмосферное давление, гПа.

Удельную влажность учитывают в зоометеорологических рас­четах, например, при определении испарения с поверхности ор­ганов дыхания у сельскохозяйственных животных и при опреде­лении соответствующих затрат энергии.

^ ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ВЛАЖНОСТИ ВОЗДУХА В АТМОСФЕРЕ С ВЫСОТОЙ

Наибольшее количество водяного пара содержится в нижних слоях воздуха, непосредственно прилегающих к испаряющей поверхности. В вышележащие слои водяной пар проникает в ре­зультате турбулентной диффузии

Проникновению водяного пара в вышележащие слои способ­ствует то обстоятельство, что он легче воздуха в 1,6 раза (плот­ность водяного пара по отношению к сухому воздуху при 0 "С равна 0,622), поэтому воздух, обогащенный водяным паром, как менее плотный стремится подняться вверх.

Распределение упругости водяного пара по вертикали зависит от изменения давления и температуры с высотой, от процессов конденсации и облакообразования. Поэтому трудно теоретичес­ки установить точную закономерность изменения упругости во­дяного пара с высотой.

Парциальное давление водяного пара с высотой уменьшается в 4...5 раз быстрее, чем атмосферное давление. Уже на высоте 6 км парциальное давление водяного пара в 9... 10 раз меньше, чем на уровне моря. Это объясняется тем, что в приземный слой атмосферы водяной пар поступает непрерывно в результате ис­парения с деятельной поверхности и его диффузии за счет тур­булентности. Кроме того, температура воздуха с высотой пони­жается, а возможное содержание водяного пара ограничивается температурой, так как понижение ее способствует насыщению пара и его конденсации.

Уменьшение упругости пара с высотой может чередоваться с ее ростом. Например, в слое инверсии упругость пара обычно растет с высотой.

Относительная влажность распределяется по вертикали не­равномерно, но с высотой в среднем она уменьшается. В при­земном слое атмосферы в летние дни она несколько возрастает с высотой за счет быстрого понижения температуры воздуха, за­тем начинает убывать вследствие уменьшения поступления во­дяного пара и снова возрастает до 100 % в слое образования об­лаков. В слоях инверсии она резко уменьшается с высотой в ре­зультате повышения температуры. Особенно неравномерно из­меняется относительная влажность до высоты 2...3 км.
^ СУТОЧНЫЙ И ГОДОВОЙ ХОД ВЛАЖНОСТИ ВОЗДУХА
В приземном слое атмосферы наблюдается хорошо выражен­ный суточный и годовой ход влагосодержания, связанный с со­ответствующими периодическими изменениями температуры.

Суточный ход упругости водяного пара и абсолютной влажности над океанами, морями и в прибрежных районах суши аналогичен суточному ходу температуры воды и воздуха: минимум перед вос­ходом Солнца и максимум в 14...15 ч. Минимум обусловлен очень слабым испарением (или его отсутствием вообще) в это время су­ток. Днем по мере увеличения температуры и соответственно ис­парения влагосодержание в воздухе растет. Таков же суточный ход упругости водяного пара и над материками зимой.

В теплое время года в глубине материков суточный ход влаго-содержания имеет вид двойной волны (рис. 5.1). Первый мини­мум наступает рано утром вместе с минимумом температуры. После восхода Солнца температура деятельной поверхности по­вышается, увеличивается скорость испарения, и количество во­дяного пара в нижнем слое атмосферы быстро растет. Такой рост продолжается до 8...10 ч, пока испарение преобладает над переносом пара снизу в более высокие слои. После 8...10ч воз­растает интенсивность турбулентного перемешивания, в связи с чем водяной пар быстро переносится вверх. Этот отток водяного пара уже не успевает компенсироваться испарением, в результа­те чего влагосодержание и, следовательно, упругость водяного пара в приземном слое уменьшаются и достигают второго мини­мума в 15...16 ч. В предвечерние часы турбулентность ослабева­ет, тогда как довольно интенсивное поступление водяного пара в атмосферу путем испарения еще продолжается. Упругость пара и абсолютная влажность в воздухе начинают увеличиваться и в 20...22ч достигают второго максимума. В ночные часы испаре­ние почти прекращается, в результате чего содержание водяного пара уменьшается.

Годовой ход упругости водяного пара и абсолютной влажности совпадают с годовым ходом температуры воздуха как над океа­ном, так и над сушей. В Северном полушарии максимум влаго-содержания воздуха наблюдается в июле, минимум - в январе. Например, в Санкт-Петербурге средняя месячная упругость пара в июле составляет 14,3 гПа, а в январе — 3,3 гПа.

Суточный ход относительной влажности зависит от упруго­сти пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверх­ности, а с ней и температуры воздуха относительная влаж­ность уменьшается [см. формулу (5.1)]. В итоге ход ее вблизи земной поверхности оказывается обратным ходу температуры поверхности и воздуха: максимум относительной влажности наступает перед восходом Солнца, а минимум — в 15... 16 ч (рис. 5.2). Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбу­лентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. По­этому амплитуда суточных колебаний относительной влажно­сти на материках значительно больше, чем над водными по­верхностями.

В годовом ходе относительная влажность воздуха, как правило, также меняется обратно ходу температуры. Например, в Санкт-Петербурге относительная влажность в мае в среднем составляет 65 %, а в декабре — 88 % (рис. 5.3). В районах с муссонным кли­матом минимум относительной влажности приходится на зиму, а максимум — на лето вследствие летнего переноса на сушу масс влажного морского воздуха: например, во Владивостоке летом /= 89%, зимой/= 68 %.

Ход дефицита насыщения водяного пара параллелен ходу температуры воздуха. В течение суток дефицит бывает наи­большим в 14...15 ч, а наименьшим — перед восходом Солнца. В течение года дефицит насыщения водяного пара имеет мак­симум в самый жаркий месяц и минимум в самый холодный. В засушливых степных районах России летом в 13 ч ежегодно отмечается дефицит насыщения, превышающий 40 гПа. В Санкт-Петербурге дефицит насыщения водяного пара в июне в среднем составляет 6,7 гПа, а в январе — только 0,5 гПа
^ ВЛАЖНОСТЬ ВОЗДУХА В РАСТИТЕЛЬНОМ ПОКРОВЕ
Растительный покров оказывает большое влияние на влаж­ность воздуха. Растения испаряют большое количество воды и тем самым обогащают водяным паром приземный слой атмос­феры, в нем наблюдается повышенное влагосодержание воздуха по сравнению с оголенной поверхностью. Этому способствует еще и уменьшение растительным покровом скорости ветра, а следовательно, и турбулентной диффузии пара. Особенно резко это выражено в дневные часы. Упругость пара внутри крон дере­вьев в ясные летние дни может быть на 2...4 гПа больше, чем на открытом месте, в отдельных случаях даже на 6...8 гПа. Внутри агрофитоценозов возможно повышение упругости пара по срав­нению с паровым полем на 6...11 гПа. В вечерние и ночные часы влияние растительности на влагосодержание меньше.

Большое влияние растительный покров оказывает и на отно­сительную влажность. Так, в ясные летние дни внутри посевов ржи и пшеницы относительная влажность на 15...30 % больше, чем над открытым местом, а в посевах высокостебельных куль­тур (кукуруза, подсолнечник, конопля) - на 20...30 % больше, чем над оголенной почвой. В посевах наибольшая относитель­ная влажность наблюдается у поверхности почвы, затененной растениями, а наименьшая — в верхнем ярусе листьев (табл. 5.1).. Распределение по вертикали относительной влажности и дефицита насыщения

Дефицит насыщения водяного пара соответственно в посевах значительно меньше, чем над оголенной почвой. Его распреде­ление характеризуется понижением от верхнего яруса листьев к нижнему (см. табл. 5.1).

Ранее отмечалось, что растительный покров значительно влияет на радиационный режим (см. гл. 2), температуру почвы и воздуха (см. гл. 3 и 4), существенно изменяя их по сравнению с открытым местом, т.е. в растительном сообществе формируется свой, особый метеорологический режим — фитоклимат. На­сколько сильно он выражен, зависит от вида, габитуса и возрас­та растений, густоты насаждения, способа посева (посадки).

Влияют на фитоклимат и погодные условия — в малооблачную и ясную погоду фитоклиматические особенности проявляются сильнее.

^ ЗНАЧЕНИЕ ВЛАЖНОСТИ ВОЗДУХА ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА


Водяной пар, содержащийся в атмосфере, имеет, как отмеча­лось в главе 2, большое значение в сохранении тепла на земной поверхности, так как он поглощает излучаемое ею тепло. Влаж­ность воздуха относится к числу элементов погоды, имеющих су­щественное значение и для сельскохозяйственного производства.

Влажность воздуха оказывает большое влияние на растение. Она в значительной степени обусловливает интенсивность транспирации. При высокой температуре и пониженной влаж­ности (/"< 30 %) транспирация резко увеличивается и у растений возникает большой недостаток воды, что отражается на их росте и развитии. Например, отмечается недоразвитие генеративных органов, задерживается цветение.

Низкая влажность в период цветения обусловливает пересы­хание пыльцы и, следовательно, неполное оплодотворение, что у зерновых, например, вызывает череззерницу. В период налива зерна чрезмерная сухость воздуха приводит к тому, что зерно получается щуплым, урожай снижается.

Малое влагосодержание воздуха приводит к мелкоплодности плодовых, ягодных культур, винограда, слабой закладке почек под урожай будущего года и, следовательно, снижению урожая.

Влажность воздуха отражается и на качестве урожая. Отмече­но, что низкая влажность снижает качество льноволокна, но по­вышает хлебопекарные качества пшеницы, технические свой­ства льняного масла, содержание сахара в плодах и т. д.

Особенно неблагоприятно снижение относительной влажно­сти воздуха при недостатке почвенной влаги. Если жаркая и су­хая погода длится продолжительное время, то растения могут за­сохнуть.

Отрицательно сказывается на росте и развитии растений и длительное повышение влагосодержания (/> 80 %). Избыточно высокая влажность воздуха обусловливает крупноклеточное строение ткани растений, что приводит в дальнейшем к полега­нию зерновых культур. В период цветения такая влажность воз­духа препятствует нормальному опылению растений и снижает урожай, так как меньше раскрываются пыльники, уменьшается лёт насекомых.

Повышенная влажность воздуха задерживает наступление полной спелости зерна, увеличивает содержание влаги в зерне и соломе, что, во-первых, неблагоприятно отражается на работе уборочных машин, а во-вторых, требует дополнительных затрат на просушку зерна (табл. 5.2).

Снижение дефицита насыщения до 3 гПа и более приводит практически к прекращению уборочных работ из-за плохих ус­ловий.

В теплое время года повышенная влажность воздуха способ­ствует развитию и распространению ряда грибных заболеваний сельскохозяйственных культур (фитофтороз картофеля и тома­тов, милдью винограда, белая гниль подсолнечника, различные виды ржавчины зерновых культур и др.). Особенно усиливается влияние этого фактора с увеличением температуры (табл. 5.3).

5.3. Число растений яровой пшеницы Цезиум 111, пораженных головней в зависимости от влажности и температуры воздуха (по А. Т. Троповой, От влажности воздуха зависят и сроки проведения ряда сель­скохозяйственных работ: борьбы с сорняками, закладки кормов на силос, проветривания складских помещений, сушки зерна и ДР-

В тепловом балансе сельскохозяйственных животных и чело­века с влажностью воздуха связан теплообмен. При температуре воздуха ниже 10 "С повышенная влажность усиливает теплоотда­чу организмов, а при высокой температуре — замедляет.

urok-po-skazke-v-a-zhukovskogo-spyashaya-carevna-tema-spyashaya-carevna.html
urok-po-tehnologii-razvitiya-kriticheskogo-mishleniya-chteniya-i-pisma-celi-i-zadachi.html
urok-po-teme-azot.html
urok-po-teme-bulgakov.html
urok-po-teme-dostoprimechatelnosti-londona.html
urok-po-teme-dvizhenie.html
  • esse.bystrickaya.ru/programmi-vstupitelnih-pismennih-ispitanij-v-pomosh-postupayushemu-v-moskovskij-gosudarstvennij-gumanitarnij-universitet-imeni-m-asholohova-moskva.html
  • shkola.bystrickaya.ru/nakoplenie-denezhnogo-kapitala-chast-5.html
  • report.bystrickaya.ru/istoriya-religii-i-cerkvi-itogi-tretego-regionalnogo-zaochnogo-etapa-konkursa-nauchnih-proektov-shkolnikov.html
  • diploma.bystrickaya.ru/vospitanie-trudovih-navikov-v-ugolke-prirodi-chast-3.html
  • kontrolnaya.bystrickaya.ru/razdel-iv-ispolzovanie-i-ohrana-vodnih-obektov-zakonodatelstva-rossijskoj-federacii.html
  • laboratornaya.bystrickaya.ru/programmi-dlya-postupayushih-v-aspiranturu-i-sdachi-kandidatskogo-minimuma-po-specialnosti-220003-ekonomicheskaya-sociologiya-i-demografiya.html
  • grade.bystrickaya.ru/o-chyom-eta-statya.html
  • assessments.bystrickaya.ru/c-n-o-acilirovanie-chast-4.html
  • thesis.bystrickaya.ru/primernij-perechen-voprosov-k-gosudarstvennomu-ekzamenu-po-specialnosti.html
  • institute.bystrickaya.ru/godina-xix-1996-4-nashata-programa-510-823-gocev-d-blgarskite-ucheni-i-tyahnata-rolya-v-nacionalnoosvoboditelnoto.html
  • kanikulyi.bystrickaya.ru/zadachi-ukrepit-zdorove-uchashihsya-povisit-uroven-sformirovannosti-kachestv-lichnosti-shkolnikov-chto-budet-sposobstvovat-uspeshnosti-ih-adaptacii-v-obshestve-snizit-negativnie-posledstviya-uchebnoj-nagruzki.html
  • literature.bystrickaya.ru/elkonskij-gorno-metallurgicheskij-kombinat.html
  • tests.bystrickaya.ru/laboratornaya-rabota-8-klassi-biblioteki-qt-elementi-otobrazheniya-qt-obektno-orientirovannoe-programmirovanie.html
  • credit.bystrickaya.ru/pobediteli-i-prizyori-oblastnogo-etapa-sozdanie-gimnazicheskoj-sistemi-ocenki-kachestva-obrazovaniya.html
  • uchit.bystrickaya.ru/uchebnaya-programma-korporativnaya-kultura-organizacii-i-osobennosti-mezhkulturnogo-menedzhmenta-72-chasa.html
  • lecture.bystrickaya.ru/465-nejrosetevoe-regulirovanie-nauchnaya-biblioteka.html
  • portfolio.bystrickaya.ru/oryadka-vidachi-i-pereoformleniya-razreshenij-na-osushestvlenie-deyatelnosti-po-perevozke-passazhirov-i-bagazha-legkovim-taksi.html
  • writing.bystrickaya.ru/133-osobennosti-ocenki-metapredmetnih-rezultatov-osnovnaya-obrazovatelnaya-programma-osnovnogo-obshego-obrazovaniya.html
  • literature.bystrickaya.ru/chlenstva-i-ee-regionalnaya-struktura-sbornik-statej-vipusk-3-pod-redakciej-professora-b-i-putinskogo.html
  • control.bystrickaya.ru/bolezn-kak-semioticheskaya-sistema-chast-5.html
  • books.bystrickaya.ru/dbtev--3-lokalnaya-politika-mestnoe-samoupravlenie-rossijskij-i-zarubezhnij-opit.html
  • occupation.bystrickaya.ru/municipalnoe-obsheobrazovatelnoe-uchrezhdenie-srednyaya-obsheobrazovatelnaya-shkola-1.html
  • znanie.bystrickaya.ru/annotaciya-rabochej-programmi-uchebnoj-disciplini-finansi-napravlenie-podgotovki.html
  • holiday.bystrickaya.ru/ob-usilenii-nadzora-za-revolyucionnoj-zakonnostyu-zvyagincev-a-g-orlov-yu-g-z-451-neizvestnaya-femida-dokumenti-sobitiya-lyudi.html
  • vospitanie.bystrickaya.ru/zahvalnost-policaca-poturcheaka-stevan-l-evti.html
  • literatura.bystrickaya.ru/seminarskoe-prakticheskoe-zanyatie-15-organizaciya-perevozok-skoroportyashihsya-gruzov.html
  • urok.bystrickaya.ru/programma-po-preddiplomnoj-praktike-230102-65-avtomatizirovannie-sistemi.html
  • report.bystrickaya.ru/klassifikaciya-krilev-po-forme-kupola-parashyuti-rodivshiesya-kak-attrakcion-so-vremenem-stali-sredstvom-spaseniya.html
  • upbringing.bystrickaya.ru/kursovaya-rabota-prognozirovanie-i-planirovanie-zhilishno-kommunalnogo-hozyajstva-8.html
  • zanyatie.bystrickaya.ru/obrazovatelnaya-programma-nachalnogo-obshego-obrazovaniya-v-kontekste-fgos-shkola-rabotaet-po-umk-shkola-rossii-stranica-15.html
  • college.bystrickaya.ru/14-toksicheskie-i-sanitarno-gigienicheskie-harakteristiki-aromaticheskih-soedinenij.html
  • uchebnik.bystrickaya.ru/uchebno-metodicheskij-kompleks-analiticheskaya-himiya-biologicheskih-obektov-i-lekarstvennih-preparatov.html
  • obrazovanie.bystrickaya.ru/programma-d-b-kabalevskogo-uchebnik.html
  • uchenik.bystrickaya.ru/1215-1230-pereriv-xviii-mezhdunarodnaya-nauchno-tehnicheskaya-konferenciya-po-fotoelektronike-i-priboram-nochnogo-videniya-moskva.html
  • ekzamen.bystrickaya.ru/rukovodstvo-po-ustanovke-ekspluatacii-i-tehnicheskomu-obsluzhivaniyu-sankt-peterburg.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.